YoVDO

Characterizing Slopes for Alternating Knots

Offered By: IMSA via YouTube

Tags

Knot Theory Courses Gauge Theory Courses Low-Dimensional Topology Courses

Course Description

Overview

Explore a 56-minute conference talk from the Gauge Theory and Low Dimensional Topology event, focusing on characterizing slopes for alternating knots. Delve into the concept of characterizing slopes for knots in the 3-sphere, examining the conjecture that all but finitely many non-integer slopes should be characterizing for a given knot. Learn about recent progress in this field, including methods to prove the conjecture for various knot classes, with particular emphasis on alternating knots. Gain insights into the oriented homeomorphism type of p/q-surgery on knots and its role in determining knot uniqueness among all knots in the 3-sphere.

Syllabus

Duncan McCoy, l'Université du Québec à Montréal: Characterizing slopes for alternating knots


Taught by

IMSA

Related Courses

Square Pegs and Round Holes
Fields Institute via YouTube
Using Machine Learning to Formulate Mathematical Conjectures - IPAM at UCLA
Institute for Pure & Applied Mathematics (IPAM) via YouTube
Low Dimensional Topology and Circle-valued Morse Functions
IMSA via YouTube
Low Dimensional Topology and Circle-Valued Morse Functions
IMSA via YouTube
Subtly Knotted Surfaces Separated by Many Internal Stabilizations
IMSA via YouTube