Characterizing Slopes for Alternating Knots
Offered By: IMSA via YouTube
Course Description
Overview
Explore a 56-minute conference talk from the Gauge Theory and Low Dimensional Topology event, focusing on characterizing slopes for alternating knots. Delve into the concept of characterizing slopes for knots in the 3-sphere, examining the conjecture that all but finitely many non-integer slopes should be characterizing for a given knot. Learn about recent progress in this field, including methods to prove the conjecture for various knot classes, with particular emphasis on alternating knots. Gain insights into the oriented homeomorphism type of p/q-surgery on knots and its role in determining knot uniqueness among all knots in the 3-sphere.
Syllabus
Duncan McCoy, l'Université du Québec à Montréal: Characterizing slopes for alternating knots
Taught by
IMSA
Related Courses
Square Pegs and Round HolesFields Institute via YouTube Using Machine Learning to Formulate Mathematical Conjectures - IPAM at UCLA
Institute for Pure & Applied Mathematics (IPAM) via YouTube Low Dimensional Topology and Circle-valued Morse Functions
IMSA via YouTube Low Dimensional Topology and Circle-Valued Morse Functions
IMSA via YouTube Subtly Knotted Surfaces Separated by Many Internal Stabilizations
IMSA via YouTube