YoVDO

Dual Principal Component Pursuit

Offered By: Fields Institute via YouTube

Tags

Machine Learning Courses Data Analysis Courses Optimization Algorithms Courses Outlier Detection Courses

Course Description

Overview

Explore a cutting-edge approach to learning unions of subspaces from data corrupted by outliers in this 51-minute lecture by René Vidal from Johns Hopkins University. Delve into Dual Principal Component Pursuit (DPCP), a non-convex method that outperforms state-of-the-art techniques in handling high-dimensional subspaces and large numbers of outliers. Examine the geometric and probabilistic conditions for DPCP's success, and discover how it can tolerate as many outliers as the square of the number of inliers. Learn about various optimization algorithms for solving the DPCP problem, including a Projected Sub-Gradient Method with linear convergence to the global minimum. Gain insights into experimental results demonstrating DPCP's superior performance in handling outliers and higher relative dimensions compared to existing methods.

Syllabus

Dual Principal Component Pursuit


Taught by

Fields Institute

Related Courses

Introduction to Artificial Intelligence
Stanford University via Udacity
Natural Language Processing
Columbia University via Coursera
Probabilistic Graphical Models 1: Representation
Stanford University via Coursera
Computer Vision: The Fundamentals
University of California, Berkeley via Coursera
Learning from Data (Introductory Machine Learning course)
California Institute of Technology via Independent