Photorealistic Reconstruction from First Principles
Offered By: Inside Livermore Lab via YouTube
Course Description
Overview
Explore a seminar on photorealistic reconstruction from first principles in computational imaging. Delve into the comparison between compressed sensing and deep learning approaches for solving inverse problems in image reconstruction. Learn about a novel method that combines aspects of both approaches to recover optical density and view-dependent color from calibrated photographs. Discover how this technique bridges the gap between compressed sensing and deep learning by using non-neural scene representation, optimization through nonlinear forward models, and memory-efficient compressed representations. Gain insights into the preliminary convergence analysis suggesting faithful reconstruction under the proposed modeling. Presented by Sara Fridovich-Keil, a postdoctoral scholar at Stanford University, this talk offers valuable knowledge for those interested in computer vision, graphics, and advanced computational imaging techniques.
Syllabus
DSI | Photorealistic Reconstruction from First Principles
Taught by
Inside Livermore Lab
Related Courses
Statistical Machine LearningEberhard Karls University of Tübingen via YouTube Linear Algebra
Steve Brunton via YouTube Koopman Analysis
Steve Brunton via YouTube Dynamical Systems
Steve Brunton via YouTube Sparsity and Compression
Steve Brunton via YouTube