Vlasov Poisson Boltzmann Equation in Bounded Domains
Offered By: Hausdorff Center for Mathematics via YouTube
Course Description
Overview
Explore the dynamics of dilute charged particles confined in bounded domains through this lecture on the Vlasov-Poisson-Boltzmann system. Delve into the crucial boundary effects and their impact on particle behavior. Learn about the construction of a unique global-in-time solution in convex domains, based on an L2-L∞ framework incorporating new weighted W1,p-estimates of distribution functions and C2,α-estimates of self-consistent electric potentials. Discover the proof of exponential convergence of distribution functions toward a global Maxwellian. Gain insights into advanced concepts in kinetic theory and mathematical physics during this 47-minute presentation from the Hausdorff Junior Trimester Program on Kinetic Theory at the Hausdorff Center for Mathematics.
Syllabus
Donghyun Lee: Vlasov Poisson Boltzmann equation in bounded domains
Taught by
Hausdorff Center for Mathematics
Related Courses
Game TheoryStanford University via Coursera Network Analysis in Systems Biology
Icahn School of Medicine at Mount Sinai via Coursera Visualizing Algebra
San Jose State University via Udacity Conceptos y Herramientas para la Física Universitaria
Tecnológico de Monterrey via Coursera Aplicaciones de la Teoría de Grafos a la vida real
Universitat Politècnica de València via UPV [X]