A Proof of the Erdos-Faber-Lovasz Conjecture
Offered By: BIMSA via YouTube
Course Description
Overview
Explore a groundbreaking proof of the Erdős-Faber-Lovász conjecture in this 46-minute conference talk by Dong Yeap Kang at BIMSA. Delve into the intricacies of the conjecture, which states that the chromatic index of any linear hypergraph on n vertices with maximum degree at most n is at most n. Discover the recent proof and its generalization for every large n, presented by Kang and his collaborators Tom Kelly, Daniela Kühn, Abhishek Methuku, and Deryk Osthus. Gain insights into this significant advancement in graph theory and combinatorics, resolving a problem that has remained open since 1972.
Syllabus
Dong Yeap Kang: A proof of the Erdos-Faber-Lovasz conjecture #ICBS2024
Taught by
BIMSA
Related Courses
理论计算机科学基础 | Introduction to Theoretical Computer SciencePeking University via edX Introducción a la Teoría Combinatoria
Universidad Católica de Murcia via Miríadax 离散数学概论 Discrete Mathematics Generality
Peking University via Coursera Discrete Mathematics
Indian Institute of Technology, Ropar via Swayam Discrete Mathematics
Shanghai Jiao Tong University via Coursera