Do Pretrained Transformers Learn In-Context by Gradient Descent?
Offered By: Center for Language & Speech Processing(CLSP), JHU via YouTube
Course Description
Overview
Explore a 15-minute conference talk presented by Aayush Mishra at ICML 2024, examining the relationship between In-Context Learning (ICL) and Gradient Descent (GD) in pre-trained language models. Delve into the limitations of previous theoretical connections between ICL and GD, highlighting the differences between experimental setups and real-world language model training. Analyze the speaker's findings on the divergent sensitivities of ICL and GD to demonstration order, and examine comprehensive empirical analyses conducted on the LLaMa-7B model. Gain insights into how ICL and GD differently modify output distributions in language models, and understand why the equivalence between these two concepts remains an open hypothesis requiring further investigation.
Syllabus
Do pretrained Transformers Learn In-Context by Gradient Descent? Aayush Mishra (ICML 2024)
Taught by
Center for Language & Speech Processing(CLSP), JHU
Related Courses
Introduction to Artificial IntelligenceStanford University via Udacity Probabilistic Graphical Models 1: Representation
Stanford University via Coursera Artificial Intelligence for Robotics
Stanford University via Udacity Computer Vision: The Fundamentals
University of California, Berkeley via Coursera Learning from Data (Introductory Machine Learning course)
California Institute of Technology via Independent