Distribution Testing - Hypothesis Testing from Very Little or Very Private Data
Offered By: Simons Institute via YouTube
Course Description
Overview
Explore a comprehensive lecture on distribution testing and hypothesis testing techniques for scenarios with limited or highly private data. Delve into advanced statistical methods presented by Clément Canonne from the University of Sydney as part of the Sublinear Algorithms Boot Camp. Gain insights into innovative approaches for analyzing distributions when faced with data scarcity or privacy constraints, and understand how these methods can be applied in various fields of study.
Syllabus
Distribution Testing: Hypothesis Testing from Very Little (or Very Private) Data
Taught by
Simons Institute
Related Courses
Introduction to Data Analytics for BusinessUniversity of Colorado Boulder via Coursera Digital and the Everyday: from codes to cloud
NPTEL via Swayam Systems and Application Security
(ISC)² via Coursera Protecting Health Data in the Modern Age: Getting to Grips with the GDPR
University of Groningen via FutureLearn Teaching Impacts of Technology: Data Collection, Use, and Privacy
University of California, San Diego via Coursera