YoVDO

Distributed TensorFlow - TensorFlow at O'Reilly AI Conference, San Francisco '18

Offered By: TensorFlow via YouTube

Tags

Kubernetes Courses Keras Courses Kubeflow Courses

Course Description

Overview

Learn distributed TensorFlow training using Keras high-level APIs in this 33-minute conference talk from the O'Reilly AI Conference in San Francisco. Explore TensorFlow's distributed architecture, set up a distributed cluster with Kubeflow and Kubernetes, and discover how to distribute Keras models. Dive into concepts like data parallelism, mirrored variables, ring all-reduce, and synchronous training. Understand performance on multi-GPU setups and learn to configure and deploy Kubernetes clusters. Gain insights into hierarchical all-reduce and how model code is automatically distributed. Access additional resources on distribution strategies and APIs to enhance your understanding of distributed TensorFlow training.

Syllabus

Training can take a long time
Data parallelism
Mirrored Variables
Ring All-reduce
Synchronous training
Performance on Multi-GPU
Setting up multi-node Environment
Deploy your Kubernetes cluster
Hierarchical All-Reduce
Model Code is Automatically Distributed
Configuring Cluster


Taught by

TensorFlow

Related Courses

Introduction to Cloud Infrastructure Technologies
Linux Foundation via edX
Scalable Microservices with Kubernetes
Google via Udacity
Google Cloud Fundamentals: Core Infrastructure
Google via Coursera
Introduction to Kubernetes
Linux Foundation via edX
Fundamentals of Containers, Kubernetes, and Red Hat OpenShift
Red Hat via edX