Distributed Caching for Generative AI: Optimizing LLM Data Pipeline on the Cloud
Offered By: The ASF via YouTube
Course Description
Overview
Explore the optimization of large language model (LLM) data pipelines on the cloud through distributed caching in this 32-minute talk by Fu Zhengjia, Alluxio Open Source Evangelist. Learn about the challenges of LLM training, including resource-intensive processes and frequent I/O operations with small files. Discover how Alluxio's distributed cache architecture system addresses these issues, improving GPU utilization and resource efficiency. Examine the synergy between Alluxio and Spark for high-performance data processing in AI scenarios. Delve into the design and implementation of distributed cache systems, best practices for optimizing cloud-based data pipelines, and real-world applications at Microsoft, Tencent, and Zhihu. Gain insights into creating modern data platforms and leveraging scalable infrastructure for LLM training and inference.
Syllabus
Distributed Caching For Generative AI: Optimizing The Llm Data Pipeline On The Cloud
Taught by
The ASF
Related Courses
Advanced Operating SystemsGeorgia Institute of Technology via Udacity High Performance Computing
Georgia Institute of Technology via Udacity GT - Refresher - Advanced OS
Georgia Institute of Technology via Udacity Distributed Machine Learning with Apache Spark
University of California, Berkeley via edX CS125x: Advanced Distributed Machine Learning with Apache Spark
University of California, Berkeley via edX