Emerging Properties in Self-Supervised Vision Transformers - Paper Explained
Offered By: Aleksa Gordić - The AI Epiphany via YouTube
Course Description
Overview
Explore a comprehensive video analysis of the "Emerging Properties in Self-Supervised Vision Transformers" paper, focusing on DINO (self DIstillation with NO labels) introduced by Facebook AI. Delve into the concept of using self-supervised learning for vision transformers and discover emerging properties such as predicting segmentation masks and high-quality features for k-NN classification. Follow a detailed walkthrough of DINO's main ideas, attention maps, pseudocode, multi-crop technique, teacher network details, results, ablations, and feature visualizations. Gain insights into how self-supervised learning in computer vision can potentially match the success seen in natural language processing tasks.
Syllabus
DINO main ideas, attention maps explained
DINO explained in depth
Pseudocode walk-through
Multi-crop and local-to-global correspondence
More details on the teacher network
Results
Ablations
Collapse analysis
Features visualized and outro
Taught by
Aleksa Gordić - The AI Epiphany
Related Courses
Introduction to Artificial IntelligenceStanford University via Udacity Computer Vision: The Fundamentals
University of California, Berkeley via Coursera Computational Photography
Georgia Institute of Technology via Coursera Einführung in Computer Vision
Technische Universität München (Technical University of Munich) via Coursera Introduction to Computer Vision
Georgia Institute of Technology via Udacity