Emerging Properties in Self-Supervised Vision Transformers - Facebook AI Research Explained
Offered By: Yannic Kilcher via YouTube
Course Description
Overview
Explore the groundbreaking DINO system developed by Facebook AI Research in this comprehensive video lecture. Delve into the fusion of self-supervised learning for computer vision with the innovative Vision Transformer (ViT) architecture. Discover how DINO achieves impressive results without labels, including the direct interpretation of attention maps as segmentation maps and the use of obtained representations for image retrieval and zero-shot k-nearest neighbor classifiers. Learn about Vision Transformers, self-supervised learning for images, self-distillation techniques, and the process of building a teacher from a student using moving averages. Examine the DINO pseudocode, understand the rationale behind using cross-entropy loss, and analyze experimental results. Gain insights into the lecturer's hypothesis on DINO's effectiveness and conclude with a discussion on the implications of this research for the field of computer vision and artificial intelligence.
Syllabus
- Intro & Overview
- Vision Transformers
- Self-Supervised Learning for Images
- Self-Distillation
- Building the teacher from the student by moving average
- DINO Pseudocode
- Why Cross-Entropy Loss?
- Experimental Results
- My Hypothesis why this works
- Conclusion & Comments
Taught by
Yannic Kilcher
Related Courses
From Graph to Knowledge Graph – Algorithms and ApplicationsMicrosoft via edX Social Network Analysis
Indraprastha Institute of Information Technology Delhi via Swayam Stanford Seminar - Representation Learning for Autonomous Robots, Anima Anandkumar
Stanford University via YouTube Unsupervised Brain Models - How Does Deep Learning Inform Neuroscience?
Yannic Kilcher via YouTube Graph SAGE - Inductive Representation Learning on Large Graphs - GNN Paper Explained
Aleksa Gordić - The AI Epiphany via YouTube