YoVDO

Diffusion Probabilistic Modeling of Protein Backbones in 3D for Motif-Scaffolding

Offered By: Valence Labs via YouTube

Tags

Computational Biology Courses Machine Learning Courses Diffusion Models Courses

Course Description

Overview

Save Big on Coursera Plus. 7,000+ courses at $160 off. Limited Time Only!
Explore diffusion probabilistic modeling of protein backbones in 3D for motif-scaffolding in this comprehensive talk. Learn about computational protein design workflows, diffusion models applied to protein structures, and the SMCDiff algorithm for efficient scaffold sampling. Discover how this approach can generate diverse scaffolds up to 80 residues long while supporting given motifs. Examine model details, unconditional sampling, limitations, and case studies. Gain insights into the potential applications for vaccine and enzyme design through this cutting-edge machine learning technique presented by experts Jason Yim and Brian Trippe.

Syllabus

- Intro
- Computational protein design workflow
- Diffusion models on protein backbones
- Forward diffusion and reverse denoising
- Why do diffusion models work?
- Why do diffusion for proteins?
- Model details
- Unconditional sampling
- Model limitations and failure modes
- Sampling SMCDiff
- Motif-scaffolding case studies and failure case
- Related work and conclusion
- Q+A


Taught by

Valence Labs

Related Courses

Introduction to Artificial Intelligence
Stanford University via Udacity
Natural Language Processing
Columbia University via Coursera
Probabilistic Graphical Models 1: Representation
Stanford University via Coursera
Computer Vision: The Fundamentals
University of California, Berkeley via Coursera
Learning from Data (Introductory Machine Learning course)
California Institute of Technology via Independent