Diffusion Models - PyTorch Implementation
Offered By: Outlier via YouTube
Course Description
Overview
Explore a comprehensive PyTorch implementation of Diffusion Models in this 22-minute tutorial video. Dive into the world of generative models, including popular examples like DALL-E, Imagen, and Stable Diffusion. Learn to code an unconditional version and train it step-by-step. Discover two key improvements: classifier-free guidance and exponential moving average. Implement these updates and train a conditional model on CIFAR-10, comparing various results. Follow along with code examples, gain insights from relevant research papers, and understand concepts like timestep embedding. Perfect for those interested in state-of-the-art machine learning techniques and their practical applications in image generation.
Syllabus
Introduction
Recap
Diffusion Tools
UNet
Training Loop
Unconditional Results
Classifier Free Guidance
Exponential Moving Average
Conditional Results
Github Code & Outro
Taught by
Outlier
Related Courses
Visual Recognition & UnderstandingUniversity at Buffalo via Coursera Deep Learning for Computer Vision
IIT Hyderabad via Swayam Deep Learning in Life Sciences - Spring 2021
Massachusetts Institute of Technology via YouTube Advanced Deep Learning Methods for Healthcare
University of Illinois at Urbana-Champaign via Coursera Generative Models
Serrano.Academy via YouTube