Differentiable Simulations for Enhanced Sampling of Rare Events
Offered By: Valence Labs via YouTube
Course Description
Overview
Explore cutting-edge applications of deep learning and auto-differentiation techniques in molecular simulations through this comprehensive talk. Delve into active learning of machine learning potentials, deep neural network generative models for coarse-grained atomic system representations, and differentiable simulations for reaction path finding. Examine the challenges of overfitting and generalizability in AI for science, discussing the scalability of active learning in molecular simulations and the sensitivity of deep learning solutions to molecular problems. Gain insights into screening photoswitchable drugs, differentiable uncertainty, and the issues and tools needed for advancing this field.
Syllabus
- Intro
- Virtuous Cycle for Design
- Autodiff, Uncertainty, and ML Potentials
- Using Neural Network Potentials for Molecules
- Screening Photoswitchable Drugs
- Differentiable Uncertainty
- Beyond Forces
- Differentiable Simulations
- Issues and Tools Needed
- Q+A
Taught by
Valence Labs
Related Courses
Quantitative Biology WorkshopMassachusetts Institute of Technology via edX Computer Aided Drug Design
Indian Institute of Technology Madras via Swayam Fundamentals of Bioinformatics
Sree Neelakanta Govt. Sanskrit College via Swayam Drug development process: combating pain
The Open University via OpenLearn How Will Quantum Computing Change the Technology Landscape? - Bruce Davie, Systems Approach, LLC
Paul G. Allen School via YouTube