YoVDO

Deep in the Dark - Deep Learning-based Malware Traffic Detection without Expert Knowledge

Offered By: IEEE via YouTube

Tags

IEEE Symposium on Security and Privacy Courses Cybersecurity Courses Machine Learning Courses Deep Learning Courses Network Security Courses Malware Detection Courses

Course Description

Overview

Explore a cutting-edge approach to malware traffic detection using deep learning techniques without relying on expert knowledge. This 25-minute IEEE conference talk, presented at the 2nd Deep Learning and Security Workshop during the 2019 IEEE Symposium on Security & Privacy, delves into the application of deep learning models for network security. Learn how these models can effectively detect and classify malicious network traffic by analyzing raw measurements directly from monitored byte streams. Discover the advantages of this method over traditional shallow models that require handcrafted features, and understand how deep learning can better capture the underlying statistics of malicious traffic. Gain insights into different raw-traffic feature representations, including packet and flow-level ones, and their impact on detection performance. Understand the potential of this approach to revolutionize network security systems and improve their robustness against evolving networking attacks.

Syllabus

Deep in the Dark - Deep Learning-based Malware Traffic Detection without Expert Knowledge


Taught by

IEEE Symposium on Security and Privacy

Tags

Related Courses

Computer Security
Stanford University via Coursera
Cryptography II
Stanford University via Coursera
Malicious Software and its Underground Economy: Two Sides to Every Story
University of London International Programmes via Coursera
Building an Information Risk Management Toolkit
University of Washington via Coursera
Introduction to Cybersecurity
National Cybersecurity Institute at Excelsior College via Canvas Network