YoVDO

Deep Constrained Dominant Sets for Person Re-Identification

Offered By: University of Central Florida via YouTube

Tags

Computer Vision Courses Machine Learning Courses Deep Learning Courses Neural Networks Courses Image Processing Courses Pattern Recognition Courses Biometrics Courses

Course Description

Overview

Explore an in-depth analysis of person re-identification techniques in this 23-minute lecture from the University of Central Florida. Delve into various network architectures, including Triplet Loss, Quadruplet Loss, and Diffusion-based approaches. Learn about the innovative Deep Constrained Dominant Sets (DCDS) method and its implementation in person re-identification tasks. Understand the concept of Dominant Sets Clustering and its constrained variant. Discover the role of Auxiliary Networks and the process of Constraint Expansion in improving re-identification accuracy. Examine the pipeline of DCDS-based networks and evaluate their performance through comprehensive results.

Syllabus

Intro
Overview
Triplet Loss Based Network
Quadruplet Loss Based Network
Diffusion Based Network
DCDS Based Network
Pipeline
Dominant Sets Clustering
Constrained Dominant Sets (CDS)
Auxiliary Net
At Testing
Constraint Expansion
Results


Taught by

UCF CRCV

Tags

Related Courses

Introduction to Artificial Intelligence
Stanford University via Udacity
Computer Vision: The Fundamentals
University of California, Berkeley via Coursera
Computational Photography
Georgia Institute of Technology via Coursera
Digital Signal Processing
École Polytechnique Fédérale de Lausanne via Coursera
Creative, Serious and Playful Science of Android Apps
University of Illinois at Urbana-Champaign via Coursera