Decision Trees and Ensemble Methods
Offered By: YouTube
Course Description
Overview
Syllabus
DTEL1 - 1 Welcome to DTE class.
DTEL1 - 2 Class Introduction.
DTEL1 - 3 Introduction to Decision Trees.
DTEL1 - 4 Impurity Functions.
DTEL1 - 5 CART Algorithm.
DTEL1 - 6 Basic Properties of Decision Trees.
DTEL1 7 Basic Regularization of Trees.
DTEL1 - 8 Sklearn Trees.
DTEL1 - 9 Conclusion.
DTEL2 2 1 Introduction.
DTEL2 2 2 Bias variance trade off.
DTEL2 2 3 Bias variance Decomposition.
DTEL2 2 4 Generalizations of bias variance tradeoff.
DTEL2 2 5 ExtraTrees Algorithm.
DTEL2 2 6 ExtraTrees with Sklearn.
DTEL2 2 7 Conclusion.
DTEL3 3 1 Introduction.
DTEL3 3 2 Bootstrap.
DTEL3 3 3 Bagging.
DTEL3 3 4 1 Example.
DTEL3 3 5 Random Forest.
DTEL3 3 4 2 Example Notebook.
DTEL3 3 6 General Ensembling.
DTEL4 4 1 Introduction.
DTEL4 4 2 Proximities.
DTEL4 4 3 Proximities Visualizations.
DTEL4 4 4 Feature Importance's.
DTEL4 4 5 Limitations of Tree Feature Importance.
DTEL4 4 6 Feature Importance's in Random Forest.
DTEL4 4 7 Summary.
DTEL5 5 1 Introduction.
DTEL5 5 2 Boosting.
DTEL5 5 3 Gradient Boosting.
DTEL5 5 4 XGBoost.
DTEL5 5 5 LightGBM.
DTEL5 5 6 CatBoost.
Taught by
Machine Learning University
Related Courses
Practical Machine LearningJohns Hopkins University via Coursera Detección de objetos
Universitat Autònoma de Barcelona (Autonomous University of Barcelona) via Coursera Practical Machine Learning on H2O
H2O.ai via Coursera Modélisez vos données avec les méthodes ensemblistes
CentraleSupélec via OpenClassrooms Introduction to Machine Learning for Coders!
fast.ai via Independent