Multi-fidelity Linear Regression for Scientific Machine Learning from Scarce Data
Offered By: Inside Livermore Lab via YouTube
Course Description
Overview
Explore cutting-edge research on multi-fidelity linear regression for scientific machine learning in data-scarce environments during this one-hour talk by Elizabeth Qian from Georgia Tech. Delve into innovative approaches for developing surrogate models for complex engineering systems when traditional high-fidelity simulations are costly. Learn about a novel multifidelity training method that leverages data of varying fidelities and costs to improve model accuracy and robustness. Discover how multifidelity control variate estimators are used to enhance linear regression models, and gain insights into theoretical analyses guaranteeing improved performance with limited training budgets. Examine numerical results demonstrating significant error reduction compared to standard training approaches when high-fidelity data is scarce. Gain valuable knowledge from Dr. Qian's expertise in model reduction, scientific machine learning, and multifidelity methods, applicable to engineering design and decision-making for complex systems.
Syllabus
DDPS | “Multi-fidelity linear regression for scientific machine learning from scarce data”
Taught by
Inside Livermore Lab
Related Courses
Scientific ComputingUniversity of Washington via Coursera Biology Meets Programming: Bioinformatics for Beginners
University of California, San Diego via Coursera High Performance Scientific Computing
University of Washington via Coursera Practical Numerical Methods with Python
George Washington University via Independent Julia Scientific Programming
University of Cape Town via Coursera