Intrusive Model Order Reduction Using Neural Network Approximants
Offered By: Inside Livermore Lab via YouTube
Course Description
Overview
Explore an innovative approach to intrusive model order reduction using neural network approximants in this hour-long talk by Francesco Romor from the Weierstrass Institute. Delve into the challenges of developing efficient linear projection-based reduced-order models for parametric partial differential equations with slowly decaying Kolmogorov n-width. Learn how neural networks, particularly autoencoders, are employed to achieve nonlinear dimension reduction and compress the dimensionality of linear approximations of solution manifolds. Discover a novel intrusive and interpretable methodology for reduced-order modeling that retains underlying physical and numerical models during the predictive stage. Examine the use of residual-based nonlinear least-squares Petrov-Galerkin method and new adaptive hyper-reduction strategies. Gain insights into the validation of this methodology through two nonlinear, time-dependent parametric benchmarks: a supersonic flow past a NACA airfoil with varying Mach number and an incompressible turbulent flow around the Ahmed body with changing slant angle.
Syllabus
“DDPS | Intrusive model order reduction using neural network approximants”
Taught by
Inside Livermore Lab
Related Courses
Neural Networks for Machine LearningUniversity of Toronto via Coursera Good Brain, Bad Brain: Basics
University of Birmingham via FutureLearn Statistical Learning with R
Stanford University via edX Machine Learning 1—Supervised Learning
Brown University via Udacity Fundamentals of Neuroscience, Part 2: Neurons and Networks
Harvard University via edX