Bridging Numerical Methods and Deep Learning with Physics-Constrained Differentiable Solvers
Offered By: Inside Livermore Lab via YouTube
Course Description
Overview
Explore cutting-edge machine learning strategies for neural PDE solvers in this hour-long talk by UC Berkeley Assistant Professor Aditi Krishnapriyan. Delve into self-supervised learning techniques for solving fluid dynamics and transport PDE problems using spectral methods, and discover "simulation-in-the-loop" approaches that incorporate PDE-constrained optimization as a neural network layer. Learn how machine learning methods can be seamlessly integrated with numerical methods in fully differentiable settings, addressing challenges in spatiotemporal modeling and limited data scenarios. Gain insights into physics-inspired machine learning, geometric deep learning, and inverse problems, with applications in molecular dynamics and fluid mechanics.
Syllabus
DDPS | Bridging numerical methods and deep learning with physics-constrained differentiable solvers
Taught by
Inside Livermore Lab
Related Courses
Introduction to Statistics: Descriptive StatisticsUniversity of California, Berkeley via edX Mathematical Methods for Quantitative Finance
University of Washington via Coursera Dynamics
Massachusetts Institute of Technology via edX Practical Numerical Methods with Python
George Washington University via Independent 統計学Ⅰ:データ分析の基礎 (ga014)
University of Tokyo via gacco