Critical Metrics of Eigenvalue Functionals via Subdifferential
Offered By: Centre de recherches mathématiques - CRM via YouTube
Course Description
Overview
Explore a comprehensive seminar on spectral geometry focusing on critical metrics of eigenvalue functionals through subdifferential analysis. Delve into David Tewodrose's joint work with Romain Petrides, which proposes a general approach to studying mapping properties of critical points for functionals F(g) = F(Sg). Examine how this method applies to Riemannian metrics on smooth manifolds, where Sg represents a set of eigenvalues dependent on g, and F is a locally Lipschitz function. Discover the central role of Clarke's subdifferential concept in this approach. Learn how this work encompasses well-known cases such as Laplace and Steklov eigenvalues while offering promising perspectives on new situations in the field of spectral geometry.
Syllabus
David Tewodrose: Critical metrics of eigenvalue functionals via subdifferential
Taught by
Centre de recherches mathématiques - CRM
Related Courses
Geometry of 2-Dimensional Riemannian Disks and Spheres - Regina RotmanInstitute for Advanced Study via YouTube Discrete Homotopy Theory and Applications
Applied Algebraic Topology Network via YouTube Geodesic Complexity of Riemannian Manifolds
Applied Algebraic Topology Network via YouTube The Gromov-Hausdorff Distance Between Spheres
Applied Algebraic Topology Network via YouTube Symmetric Spaces by Pralay Chatterjee
International Centre for Theoretical Sciences via YouTube