Datasets for Data-Driven Reinforcement Learning
Offered By: Yannic Kilcher via YouTube
Course Description
Overview
Explore a comprehensive video analysis of a research paper on offline reinforcement learning benchmarks. Delve into the challenges of evaluating offline RL algorithms and learn about a new benchmark designed to address these issues. Discover key properties of datasets relevant to offline RL applications, including those generated by hand-designed controllers and human demonstrators, multi-objective datasets, and heterogeneous mixes of trajectory quality. Understand how this benchmark aims to focus research efforts on methods that can drive substantial improvements in real-world offline RL problems. Gain insights into the paper's abstract, authors, and access links to the full paper and associated code repository.
Syllabus
Datasets for Data-Driven Reinforcement Learning
Taught by
Yannic Kilcher
Related Courses
Computational NeuroscienceUniversity of Washington via Coursera Reinforcement Learning
Brown University via Udacity Reinforcement Learning
Indian Institute of Technology Madras via Swayam FA17: Machine Learning
Georgia Institute of Technology via edX Introduction to Reinforcement Learning
Higher School of Economics via Coursera