Tensor Networks for Classical and Quantum Machine Learning Tasks
Offered By: PCS Institute for Basic Science via YouTube
Course Description
Overview
Explore tensor networks for classical and quantum machine learning tasks in this 52-minute conference talk by Dario Poletti from PCS Institute for Basic Science. Delve into the application of matrix product states and operators, the preferred method for studying one-dimensional strongly interacting many-body quantum systems. Discover how this approach allows for the exploration of the most relevant and numerically manageable portion of an exponentially large space while accurately describing correlations between distant parts of a system—a crucial element in machine learning tasks. Learn about a novel machine learning model that utilizes trained matrix product operators for sequence-to-sequence prediction, enabling the forecast of subsequent sequences based on current time step data. Examine the model's applications in both classical problems, such as cellular automata evolution, and quantum challenges, including predicting quantum state evolution under the influence of unknown external environments, potentially non-Markovian in nature.
Syllabus
Dario Poletti: Tensor networks for classical and quantum machine learning tasks
Taught by
PCS Institute for Basic Science
Related Courses
Classical Simulation of Quantum Many-body Systems with Tensor NetworksSimons Institute via YouTube Quantum Circuits, Cellular Automata and Tensor Networks - Ignacio Cirac
Institute for Advanced Study via YouTube Tensor Networks and Neural Network States - From Chiral Topological Order to Image Classification
APS Physics via YouTube Bridging Deep Learning and Many-Body Quantum Physics via Tensor Networks
APS Physics via YouTube Tensor Networks -QC-DMRG- in a Complete Active Space Coupled Cluster Method
Institute for Pure & Applied Mathematics (IPAM) via YouTube