YoVDO

Nanomechanical Control of Superconducting Charge-Qubit Networks

Offered By: PCS Institute for Basic Science via YouTube

Tags

Quantum Computing Courses Quantum Information Courses Quantum Entanglement Courses Superconductivity Courses Quantum Networks Courses

Course Description

Overview

Save Big on Coursera Plus. 7,000+ courses at $160 off. Limited Time Only!
Explore a groundbreaking lecture on nanomechanical control of superconducting charge-qubit networks. Delve into innovative nanoelectromechanical setups and time-protocols designed to demonstrate the manipulation of superconducting charge-qubit quantum networks through nanomechanical means. Examine the intricate setup involving terminals that utilize the AC Josephson effect between bias voltage-controlled bulk superconductors and mechanically vibrating mesoscopic superconducting grains in the Cooper pair box regime, controlled by gate voltage. Discover how quantum network manipulation is achieved through the transduction of quantum information between charge qubits and intentionally built superpositions of nanomechanical coherent states, forming cat-states. Gain insights into the role of quantum entanglement between electrical and mechanical states in this cutting-edge performance. This 57-minute presentation by Danko Radić from the PCS Institute for Basic Science offers a deep dive into the fascinating intersection of nanotechnology, superconductivity, and quantum information science.

Syllabus

Danko Radić: Nanomechanical control of superconducting charge-qubit networks


Taught by

PCS Institute for Basic Science

Related Courses

Quantum Mechanics for Scientists and Engineers 2
Stanford University via edX
Quantum Mechanics for Scientists and Engineers 2
Stanford University via Stanford OpenEdx
Quantum Information Science II
Massachusetts Institute of Technology via edX
The Hardware of a Quantum Computer
Delft University of Technology via edX
Quantum Information Science II: Efficient Quantum Computing - fault tolerance and complexity
Massachusetts Institute of Technology via edX