Nanomechanical Control of Superconducting Charge-Qubit Networks
Offered By: PCS Institute for Basic Science via YouTube
Course Description
Overview
Explore a groundbreaking lecture on nanomechanical control of superconducting charge-qubit networks. Delve into innovative nanoelectromechanical setups and time-protocols designed to demonstrate the manipulation of superconducting charge-qubit quantum networks through nanomechanical means. Examine the intricate setup involving terminals that utilize the AC Josephson effect between bias voltage-controlled bulk superconductors and mechanically vibrating mesoscopic superconducting grains in the Cooper pair box regime, controlled by gate voltage. Discover how quantum network manipulation is achieved through the transduction of quantum information between charge qubits and intentionally built superpositions of nanomechanical coherent states, forming cat-states. Gain insights into the role of quantum entanglement between electrical and mechanical states in this cutting-edge performance. This 57-minute presentation by Danko Radić from the PCS Institute for Basic Science offers a deep dive into the fascinating intersection of nanotechnology, superconductivity, and quantum information science.
Syllabus
Danko Radić: Nanomechanical control of superconducting charge-qubit networks
Taught by
PCS Institute for Basic Science
Related Courses
Physics of MaterialsIndian Institute of Technology Madras via Swayam Advanced Condensed Matter Physics
Indian Institute of Technology Guwahati via Swayam Introduction to Solid State Physics
Indian Institute of Technology Kanpur via Swayam A Brief Course On Superconductivity
Indian Institute of Technology Guwahati via Swayam Solid State Physics
Indian Institute of Technology, Kharagpur via Swayam