YoVDO

Deep Learning and Shape Modelling for Medical Image Reconstruction, Segmentation and Analysis

Offered By: Institute for Pure & Applied Mathematics (IPAM) via YouTube

Tags

Deep Learning Courses Image Segmentation Courses Super-Resolution Courses

Course Description

Overview

Explore deep learning approaches for medical image processing in this 49-minute lecture by Daniel Rueckert from Imperial College London. Delve into techniques for reconstructing, enhancing resolution, and segmenting Magnetic Resonance (MR) images using advanced deep learning methods. Learn how to incorporate anatomical shape information as prior knowledge to improve these processes. Discover the potential of using shape and motion data to develop interpretable deep learning models for diagnosis and prognosis. This talk, part of the Deep Learning and Medical Applications 2020 series at UCLA's Institute for Pure and Applied Mathematics, offers valuable insights into the intersection of artificial intelligence and medical imaging.

Syllabus

Daniel Rueckert: "Deep learning and shape modelling for medical image reconstruction, segmentati..."


Taught by

Institute for Pure & Applied Mathematics (IPAM)

Related Courses

Neural Networks for Machine Learning
University of Toronto via Coursera
機器學習技法 (Machine Learning Techniques)
National Taiwan University via Coursera
Machine Learning Capstone: An Intelligent Application with Deep Learning
University of Washington via Coursera
Прикладные задачи анализа данных
Moscow Institute of Physics and Technology via Coursera
Leading Ambitious Teaching and Learning
Microsoft via edX