Learning Beyond Stabilizer States - IPAM at UCLA
Offered By: Institute for Pure & Applied Mathematics (IPAM) via YouTube
Course Description
Overview
Explore a 46-minute conference talk on quantum learning presented by Daniel Liang from Rice University at IPAM's Mathematical Aspects of Quantum Learning Workshop. Delve into the topic of learning beyond stabilizer states, focusing on Clifford circuits and their applications in quantum computing. Discover a new learning algorithm for states produced by Clifford circuits with a small number of T gates, running in polynomial time relative to the number of qubits and exponential time relative to the number of T gates. Learn about an efficient property tester for stabilizer nullity/dimension and the use of Bell difference sampling as a key algorithmic tool. Gain insights into the latest advancements in quantum learning theory and its implications for error correction, quantum key distribution, and classical simulation.
Syllabus
Daniel Liang - Learning Beyond Stabilizer States - IPAM at UCLA
Taught by
Institute for Pure & Applied Mathematics (IPAM)
Related Courses
Natural Language ProcessingColumbia University via Coursera Intro to Algorithms
Udacity Conception et mise en œuvre d'algorithmes.
École Polytechnique via Coursera Paradigms of Computer Programming
Université catholique de Louvain via edX Data Structures and Algorithm Design Part I | 数据结构与算法设计(上)
Tsinghua University via edX