General Distributed Framework for Contraction of Sparse Tensor with Tensor Network
Offered By: ACM SIGPLAN via YouTube
Course Description
Overview
Explore a 10-minute conference talk from ACM SIGPLAN that delves into a general distributed framework for contracting sparse tensors with tensor networks. Learn about algorithms and a runtime system designed to identify and execute the most efficient loop nest for any SpTTN (Sparse Tensor-Tensor Network) kernel. Discover how this approach optimizes performance in applications ranging from machine learning to computational quantum chemistry. Examine the framework's ability to enumerate loop nests for autotuning and find low-cost loop-nests based on metrics like buffer size or cache miss models. Gain insights into the runtime system's capability to identify optimal loop nests without user guidance and provide distributed-memory parallelization for SpTTN kernels. Evaluate the framework's performance using real-world and synthetic tensors, and compare its effectiveness against state-of-the-art libraries and specialized codes.
Syllabus
[CTSTA'23] A General Distributed Framework for Contraction of a Sparse Tensor with a Tensor Network
Taught by
ACM SIGPLAN
Related Courses
The Quantum WorldHarvard University via edX Approximate Methods In Quantum Chemistry
Indian Institute of Technology, Kharagpur via Swayam Computational Chemistry and Classical Molecular Dynamics
NPTEL via YouTube A Mathematical Look at Electronic Structure Theory - JuliaCon 2021 Workshop
The Julia Programming Language via YouTube Breaking the Curse of Dimension in Quantum Mechanical Computations Through Analysis and Probability
Alan Turing Institute via YouTube