Critical Windows: Non-Asymptotic Theory for Feature Emergence in Diffusion Models
Offered By: Generative Memory Lab via YouTube
Course Description
Overview
Explore the groundbreaking research presented by Marvin Li on non-asymptotic theory for feature emergence in diffusion models. Delve into the concept of critical windows and their significance in understanding the behavior of diffusion models. Gain insights into the theoretical foundations and practical implications of this innovative approach, which challenges traditional asymptotic analyses. Learn how this research contributes to advancing our understanding of feature emergence in machine learning and artificial intelligence.
Syllabus
Critical windows: non-asymptotic theory for feature emergence in diffusion models
Taught by
Generative Memory Lab
Related Courses
Introduction to Artificial IntelligenceStanford University via Udacity Probabilistic Graphical Models 1: Representation
Stanford University via Coursera Artificial Intelligence for Robotics
Stanford University via Udacity Computer Vision: The Fundamentals
University of California, Berkeley via Coursera Learning from Data (Introductory Machine Learning course)
California Institute of Technology via Independent