Convolutions in Image Processing - MIT 18.S191 Fall 2020 - Week 1
Offered By: The Julia Programming Language via YouTube
Course Description
Overview
Syllabus
- Introduction.
- Box blur as an average.
- Dealing with the edges.
- Gaussian blur.
- Visualizing gaussian blur.
- Convolution.
- Kernels and the gaussian kernel.
- Looking at the convolution in Julia.
- Julia: `ImageFiltering` package and Kernels.
- Julia: `OffsetArray` with different indices.
- Visualizing a kernel.
- Computational complexity.
- Julia: `prod` function for a product.
- Example of a non-blurring kernel.
- Sharpening edges in an image.
- Edge detection with Sobel filters.
- Relation to polynomial multiplication.
- Convolution in polynomial multiplication.
- Relation to Fourier transforms.
- Fourier transform of an image.
- Convolution via Fourier transform is faster.
- Final thoughts.
Taught by
The Julia Programming Language
Tags
Related Courses
Einführung in Computer VisionTechnische Universität München (Technical University of Munich) via Coursera Introducción a la visión por computador: desarrollo de aplicaciones con OpenCV.
Universidad Carlos iii de Madrid via edX Introduction to Computer Vision
Indian Institute of Technology Delhi via Swayam Image Processing in Python
DataCamp Automated Multiple Face Recognition AI Using Python
Udemy