YoVDO

ConvNeXt- A ConvNet for the 2020s - Paper Explained

Offered By: Aleksa Gordić - The AI Epiphany via YouTube

Tags

Neural Networks Courses Deep Learning Courses Computer Vision Courses Object Detection Courses Image Segmentation Courses ResNet Courses Vision Transformers Courses

Course Description

Overview

Explore a comprehensive analysis of the "A ConvNet for the 2020s" paper in this 40-minute video lecture. Delve into the convergence of transformers and CNNs, understand the main diagram and its corrections, and recap the Swin transformer. Learn about modernizing ResNets, dive deeper into stage ratios and miscellaneous topics like inverted bottlenecks and depthwise convolutions. Examine the results in classification, object detection, and segmentation tasks. Gain insights into how ConvNets outperform vision transformers in big data regimes without attention layers, demonstrating the enduring relevance of convolutional priors in computer vision.

Syllabus

Intro - convergence of transformers and CNNs
Main diagram explained
Main diagram corrections
Swin transformer recap
Modernizing ResNets
Diving deeper: stage ratio
Diving deeper: misc inverted bottleneck, depthwise conv...
Results classification, object detection, segmentation
RIP DanNet
Summary and outro


Taught by

Aleksa Gordić - The AI Epiphany

Related Courses

2D image processing
Higher School of Economics via Coursera
3D Reconstruction - Multiple Viewpoints
Columbia University via Coursera
3D Reconstruction - Single Viewpoint
Columbia University via Coursera
AI-900: Microsoft Certified Azure AI Fundamentals
A Cloud Guru
TensorFlow Developer Certificate Exam Prep
A Cloud Guru