YoVDO

ConvNets in Practice

Offered By: Alfredo Canziani via YouTube

Tags

Computer Vision Courses Deep Learning Courses Neural Networks Courses Object Detection Courses Face Detection Courses Semantic Segmentation Courses

Course Description

Overview

Explore the practical applications of Convolutional Neural Networks (ConvNets) in this comprehensive 52-minute lecture by Yann LeCun. Delve into the fundamentals of convolutions, their uses, and the importance of stacking layers. Learn about object detection, multiple object recognition, and character recognition techniques. Discover the sliding window ConvNet approach and its application in face detection. Engage with a whiteboard session and Q&A to solidify your understanding. Investigate semantic segmentation and its role in robot navigation. Examine category-level semantic segmentation, FPGA ConvNet accelerators, and error rates on ImageNet. Compare different network architectures, including ResNet, to gain insights into state-of-the-art deep learning techniques.

Syllabus

– Welcome to class
– ConvNets in practice
– What are convolutions good for?
– Why do we need to stack layers?
– Object detection, multiple object recognition
– Multiple character recognition
– Sliding window ConvNet
– Face detection
– Whiteboard time!
– Q&A
– Semantic segmentation
– Robot navigation using semantic segmentation
– Category-level semantic segmentation
– FPGA ConvNet accelerator
– Error rate on ImageNet
– ResNet
– Networks comparison


Taught by

Alfredo Canziani

Tags

Related Courses

Computer Vision: The Fundamentals
University of California, Berkeley via Coursera
Detección de objetos
Universitat Autònoma de Barcelona (Autonomous University of Barcelona) via Coursera
Deep Learning Summer School
Independent
Deep Learning in Computer Vision
Higher School of Economics via Coursera
Computer Vision and Image Analysis
Microsoft via edX