YoVDO

Controlling Distribution Shifts in Language Models: A Data-Centric Approach

Offered By: Simons Institute via YouTube

Tags

Language Models Courses Domain Adaptation Courses

Course Description

Overview

Save Big on Coursera Plus. 7,000+ courses at $160 off. Limited Time Only!
Explore a lecture on controlling distribution shifts in language models through data-centric approaches. Delve into Tatsunori Hashimoto's presentation from Stanford University, part of the Emerging Generalization Settings series at the Simons Institute. Examine the challenges of cross-task and cross-domain generalization in NLP, focusing on the trade-offs between generalization and control in language model pretraining. Discover two complementary strategies: algorithmic data filtering to prioritize benchmark-relevant training data and domain adaptation through large-scale synthesis of domain-specific pretraining data. Gain insights into addressing the gaps between pretraining and target evaluation caused by distribution shifts in language models.

Syllabus

Controlling distribution shifts in language models: a data-centric approach.


Taught by

Simons Institute

Related Courses

Introduction to Deep Learning
Massachusetts Institute of Technology via YouTube
Taming Dataset Bias via Domain Adaptation
Alexander Amini via YouTube
Making Our Models Robust to Changing Visual Environments
Andreas Geiger via YouTube
Learning Compact Representation with Less Labeled Data from Sensors
tinyML via YouTube
Geo-localization Framework for Real-world Scenarios - Defense Presentation
University of Central Florida via YouTube