Compositional Models - Complexity of Representation and Interference
Offered By: MITCBMM via YouTube
Course Description
Overview
Explore the intricacies of compositional models in this 51-minute lecture by Alan Yuille from the University of California, Los Angeles. Delve into the complexity of representation and interference, covering topics such as data-driven models, feedforward and feedback mechanisms, generative models, and hierarchies. Examine the history of generative models and their application to cluttered data scenarios. Analyze cross-examples, parameters, and local ambiguity in various model types. Gain insights into the importance of hierarchical structures in compositional modeling through in-depth discussions and examples.
Syllabus
Introduction
Datadriven models
Representations
Feedforward Feedback
Do generative models require feedback
History of generative models
Models of data in clutter
Hierarchies
Cross
Examples
Parameters
Other Models
Local Ambiguity
Why Hierarchies
Discussion
Taught by
MITCBMM
Related Courses
Visual Recognition & UnderstandingUniversity at Buffalo via Coursera Deep Learning for Computer Vision
IIT Hyderabad via Swayam Deep Learning in Life Sciences - Spring 2021
Massachusetts Institute of Technology via YouTube Advanced Deep Learning Methods for Healthcare
University of Illinois at Urbana-Champaign via Coursera Generative Models
Serrano.Academy via YouTube