Complexity of Approximating Holder Classes from Information with Varying Gaussian Noise
Offered By: Banach Center via YouTube
Course Description
Overview
Explore the intricacies of approximating Holder classes in a 35-minute conference talk presented at the 51st Conference on Applications of Mathematics. Delve into the complexities introduced by varying Gaussian noise in information processing as Leszek Plaskota from the Institute of Applied Mathematics and Mechanics at the University of Warsaw's Faculty of Mathematics, Informatics, and Mechanics shares insights on this challenging mathematical problem. Gain a deeper understanding of the computational challenges and theoretical considerations involved in approximating Holder classes under these dynamic noise conditions.
Syllabus
Complexity of approximating Holder classes from in-formation with varying Gaussian noise
Taught by
Banach Center
Related Courses
Automata TheoryStanford University via edX Introduction to Computational Thinking and Data Science
Massachusetts Institute of Technology via edX 算法设计与分析 Design and Analysis of Algorithms
Peking University via Coursera How to Win Coding Competitions: Secrets of Champions
ITMO University via edX Introdução à Ciência da Computação com Python Parte 2
Universidade de São Paulo via Coursera