End-to-End Deep Learning Project: Kidney Disease Classification with MLflow, DVC, and Deployment
Offered By: Krish Naik via YouTube
Course Description
Overview
Embark on a comprehensive 4-hour journey to master end-to-end deep learning project implementation for Kidney Disease Classification. Learn to set up a GitHub repository, create project templates, and install necessary requirements. Dive into essential modules like logging, exception handling, and utilities. Explore project workflows, data ingestion, base model preparation, and model training. Integrate MLflow for model evaluation and implement DVC pipelines. Develop prediction pipelines and user applications. Finally, tackle Dockerization and AWS CICD deployment to bring your project to life.
Syllabus
- Introduction
- Project Introduction
- Github Repository Setup
- Project Template Creation
- Requirements Installation & Project Setup
- Logging, Exception & Utils Modules
- Project Workflows
- Data Ingestion Component
- Prepare Base Model Component
- Model Trainer Component
- Model Evaluation Component & MLflow Integration
- DVC Pipeline
- Prediction Pipeline & User App
- Dockerization & AWS CICD Deployment
- Conclusion
Taught by
Krish Naik
Related Courses
Predicción del fraude bancario con autoML y PycaretCoursera Project Network via Coursera Clasificación de datos de Satélites con autoML y Pycaret
Coursera Project Network via Coursera Regresión (ML) en la vida real con PyCaret
Coursera Project Network via Coursera ML Pipelines on Google Cloud
Google Cloud via Coursera ML Pipelines on Google Cloud
Pluralsight