Co-Location of CPU and GPU Workloads for High Resource Efficiency in Kubernetes
Offered By: Linux Foundation via YouTube
Course Description
Overview
Explore strategies for optimizing resource utilization in Kubernetes clusters by co-locating CPU and GPU workloads. Learn how Ant Financial and Alibaba achieved a 10% increase in utilization through innovative approaches. Discover the creation of a new QoS class, implementation of node-level cgroups for batch jobs, and use of PodGroup CRD for gang scheduling. Gain insights into building and managing a co-location cluster with over 100 GPU and 500 CPU nodes, effectively combining long-running services and AI batch jobs. This 37-minute conference talk from the Linux Foundation provides valuable experience and practices for maximizing resource efficiency in Kubernetes environments.
Syllabus
Co-Location of CPU and GPU Workloads with High Resource Efficiency - Penghao Cen & Jian He
Taught by
Linux Foundation
Tags
Related Courses
Моделирование биологических молекул на GPU (Biomolecular modeling on GPU)Moscow Institute of Physics and Technology via Coursera Practical Deep Learning For Coders
fast.ai via Independent GPU Architectures And Programming
Indian Institute of Technology, Kharagpur via Swayam Perform Real-Time Object Detection with YOLOv3
Coursera Project Network via Coursera Getting Started with PyTorch
Coursera Project Network via Coursera