CMU Neural Nets for NLP 2020 - Multitask and Multilingual Learning
Offered By: Graham Neubig via YouTube
Course Description
Overview
Syllabus
Intro
Remember, Neural Nets are Feature Extractors!
Reminder: Types of Learning
Standard Multi-task Learning
Selective Parameter Adaptation • Sometimes it is better to adapt only some of the parameters
Different Layers for Different Tasks (Hashimoto et al. 2017)
Multiple Annotation Standards
Supervised/Unsupervised Adaptation
Supervised Domain Adaptation through Feature Augmentation
Unsupervised Learning through Feature Matching
Multi-lingual Sequence-to- sequence Models
Multi-lingual Pre-training
Difficulties in Fully Multi- lingual Learning
Data Balancing
Cross-lingual Transfer Learning
What if languages don't share the same script?
Zero-shot Transfer to New Languages
Data Creation, Active Learning . In order to get in-language training data, Active Learning (AL) can be used
Taught by
Graham Neubig
Related Courses
An Introduction to Evidence-Based Undergraduate STEM TeachingVanderbilt University via Coursera Medical Education in the New Millennium
Stanford University via Stanford OpenEdx Inquiry Through Science & Engineering Practices
Montana State University via Desire2Learn Introduction to Mao Zedong Thought | 毛泽东思想概论
Tsinghua University via edX Problem-Based Learning: Principles and Design
Maastricht University via NovoEd