YoVDO

Neural Nets for NLP - Debugging Neural Nets

Offered By: Graham Neubig via YouTube

Tags

Neural Networks Courses Natural Language Processing (NLP) Courses Overfitting Courses Model Optimization Courses

Course Description

Overview

Learn essential techniques for debugging neural networks in natural language processing applications. This comprehensive lecture covers identifying problems, addressing training time issues, and resolving test time challenges. Explore strategies for optimizing model size, implementing residual connections, fine-tuning optimizers and learning rates, and improving initialization. Discover methods for effective mini-batching, learning rate decay, and battling overfitting. Gain insights into debugging test time performance, including minibatch bugs, unit testing, beam search, and output generation. Master quantitative analysis techniques and compare empty toolkit approaches to enhance your neural network debugging skills for NLP tasks.

Syllabus

Introduction
Problems with Neural Networks
Key to Debugging
Problem
Possible Causes
Debugging Training Time
Model Size
Residual Connections Highway Networks
Optimization
Optimizers
Learning Rate
Initialization
Mini Batching
Sorting
Learning Rate Decay
Other Questions
Test Time Performance
Minibatch Bugs
Unit Testing
Beam Search
Output Generation
Quantitative Analysis
Compare Empty Toolkit
Battling Overfitting
Memory


Taught by

Graham Neubig

Related Courses

Neural Networks for Machine Learning
University of Toronto via Coursera
Good Brain, Bad Brain: Basics
University of Birmingham via FutureLearn
Statistical Learning with R
Stanford University via edX
Machine Learning 1—Supervised Learning
Brown University via Udacity
Fundamentals of Neuroscience, Part 2: Neurons and Networks
Harvard University via edX