Neural Nets for NLP 2020 - Convolutional Neural Networks for Text
Offered By: Graham Neubig via YouTube
Course Description
Overview
Syllabus
Intro
Outline
An Example Prediction Problem: Sentiment Classification
Continuous Bag of Words (CBOW)
Deep CBOW
Why Bag of n-grams?
What Problems
Neural Sequence Models
Definition of Convolution
Intuitive Understanding
Priori Entailed by CNNS
Concept: 2d Convolution
Concept: Stride
Concept: Padding
Three Types of Convolutions
Concept: Multiple Filters
Concept: Pooling
Overview of the Architecture
Embedding Layer
Conv. Layer
Pooling Layer
Output Layer
Dynamic Filter CNN (e.g. Brabandere et al. 2016)
CNN Applications
NLP (Almost) from Scratch (Collobert et al. 2011)
CNN-RNN-CRF for Tagging (Ma et al. 2016) . A classic framework and de-facto standard for
Why Structured Convolution?
Understand the design philosophy of a model
Structural Bias
component entail?
Taught by
Graham Neubig
Related Courses
Natural Language ProcessingColumbia University via Coursera Natural Language Processing
Stanford University via Coursera Introduction to Natural Language Processing
University of Michigan via Coursera moocTLH: Nuevos retos en las tecnologĂas del lenguaje humano
Universidad de Alicante via MirĂadax Natural Language Processing
Indian Institute of Technology, Kharagpur via Swayam