YoVDO

Neural Nets for NLP 2017 - Reinforcement Learning

Offered By: Graham Neubig via YouTube

Tags

Neural Networks Courses Natural Language Processing (NLP) Courses Reinforcement Learning Courses

Course Description

Overview

Explore reinforcement learning concepts in this comprehensive lecture from CMU's Neural Networks for NLP course. Delve into the fundamentals of reinforcement learning, policy gradient methods, and the REINFORCE algorithm. Learn techniques for stabilizing reinforcement learning and understand value-based approaches. Access accompanying slides and code examples to reinforce your understanding. Gain insights into practical applications of reinforcement learning in natural language processing, including dialogue systems and user simulators. Discover the differences between supervised learning and self-training, and explore the challenges of credit assignment and exploration vs. exploitation in reinforcement learning scenarios.

Syllabus

Intro
What is reinforcement learning
Examples of reinforcement learning
Supervised Learning
Self Training
Policy Gradient
Credit assignment
Problem
Baseline
Calculating the baseline
Increasing batch size
Reinforcement Learning
Runthrough
Valuebased reinforcement learning
Estimating value functions
Exploration vs exploitation
Reinforcement learning examples
Dialogue
User simulators
Actions in spaces


Taught by

Graham Neubig

Related Courses

Computational Neuroscience
University of Washington via Coursera
Reinforcement Learning
Brown University via Udacity
Reinforcement Learning
Indian Institute of Technology Madras via Swayam
FA17: Machine Learning
Georgia Institute of Technology via edX
Introduction to Reinforcement Learning
Higher School of Economics via Coursera