Neural Nets for NLP 2017 - Reinforcement Learning
Offered By: Graham Neubig via YouTube
Course Description
Overview
Explore reinforcement learning concepts in this comprehensive lecture from CMU's Neural Networks for NLP course. Delve into the fundamentals of reinforcement learning, policy gradient methods, and the REINFORCE algorithm. Learn techniques for stabilizing reinforcement learning and understand value-based approaches. Access accompanying slides and code examples to reinforce your understanding. Gain insights into practical applications of reinforcement learning in natural language processing, including dialogue systems and user simulators. Discover the differences between supervised learning and self-training, and explore the challenges of credit assignment and exploration vs. exploitation in reinforcement learning scenarios.
Syllabus
Intro
What is reinforcement learning
Examples of reinforcement learning
Supervised Learning
Self Training
Policy Gradient
Credit assignment
Problem
Baseline
Calculating the baseline
Increasing batch size
Reinforcement Learning
Runthrough
Valuebased reinforcement learning
Estimating value functions
Exploration vs exploitation
Reinforcement learning examples
Dialogue
User simulators
Actions in spaces
Taught by
Graham Neubig
Related Courses
Natural Language ProcessingColumbia University via Coursera Natural Language Processing
Stanford University via Coursera Introduction to Natural Language Processing
University of Michigan via Coursera moocTLH: Nuevos retos en las tecnologĂas del lenguaje humano
Universidad de Alicante via MirĂadax Natural Language Processing
Indian Institute of Technology, Kharagpur via Swayam