YoVDO

CMU Multilingual NLP 2020 - Text Classification and Sequence Labeling

Offered By: Graham Neubig via YouTube

Tags

Natural Language Processing (NLP) Courses Neural Networks Courses Named Entity Recognition Courses Text Classification Courses Backpropagation Courses Feedforward Neural Networks Courses Sequence Labeling Courses

Course Description

Overview

Explore text classification and sequence labeling in multilingual natural language processing through this comprehensive lecture from CMU's CS11-737 course. Delve into various models, techniques, and datasets used for these tasks, including neural networks, recurrent neural networks, and feedforward neural networks. Learn about language identification, named entity recognition, and composite benchmarks. Gain insights into the application of these concepts in multilingual contexts, with a focus on practical implementation and real-world datasets. Enhance your understanding of NLP fundamentals and advanced techniques for processing text across multiple languages.

Syllabus

Introduction
Text Classification
Sequence labeling
Span labeling
Text segmentation
extractor
predictor
classification
alternative methods
what are neural networks
computation graphs
Graph construction
Backpropagation
Neural Network Framework
Recurrent Neural Networks
FeedForward Neural Networks
featurizing a sequence
rnns
rnn
Summary
Multilingual Labeling
Language Identification
Text Classification Data Sets
Sequence Labeling Data Sets
Named Entity Recognition Data Sets
Composite Benchmarks
Class Discussion


Taught by

Graham Neubig

Related Courses

Sprachtechnologie in den Digital Humanities
University of Zurich via Coursera
Sequence Models
DeepLearning.AI via Coursera
Named Entity Recognition using LSTMs with Keras
Coursera Project Network via Coursera
Natural Language Processing with Sequence Models
DeepLearning.AI via Coursera
Introduction to Natural Language Processing in Python
Coursera Project Network via Coursera