YoVDO

CMU Advanced NLP: Recurrent Neural Networks

Offered By: Graham Neubig via YouTube

Tags

Natural Language Processing (NLP) Courses Recurrent Neural Networks (RNN) Courses Long short-term memory (LSTM) Courses

Course Description

Overview

Explore recurrent neural networks in this advanced natural language processing lecture from Carnegie Mellon University. Delve into the intricacies of long-distance dependencies, the Winigrad Schema Challenge, and various types of predictions. Examine the structure and functionality of recurrent networks, addressing the vanishing gradient problem and introducing Long Short-Term Memory (LSTM) networks. Analyze the strengths and weaknesses of recurrence in sentence modeling, and discover the potential of pre-training techniques for RNNs. Gain insights into efficiency considerations and optimization strategies for these powerful deep learning models.

Syllabus

Intro
Long Distance Dependencies
Winigrad Schema Challenge
Types of Prediction
Unconditioned vs Condition Prediction
Types of Unconditioned Prediction
Types of Condition Prediction
Recurrent Neural Networks
Vanishing Gradients
LTSM
RNNs
Other examples
Efficiency
Optimization


Taught by

Graham Neubig

Related Courses

Reinforcement Learning for Trading Strategies
New York Institute of Finance via Coursera
Natural Language Processing with Sequence Models
DeepLearning.AI via Coursera
Fake News Detection with Machine Learning
Coursera Project Network via Coursera
English/French Translator: Long Short Term Memory Networks
Coursera Project Network via Coursera
Text Classification Using Word2Vec and LSTM on Keras
Coursera Project Network via Coursera