YoVDO

Discrete Morse Theory Meets Multi-Parameter Persistence

Offered By: Applied Algebraic Topology Network via YouTube

Tags

Discrete Morse Theory Courses Topological Data Analysis Courses Betti Numbers Courses

Course Description

Overview

Explore the intersection of Discrete Morse Theory and Multi-Parameter Persistence in this 52-minute lecture by Claudia Landi. Delve into how Discrete Morse theory reduces cell complexes to critical cells, carrying essential homological information. Examine the potential of multiparameter persistence in topological data analysis for multivariate data, while addressing its computational challenges. Learn about recent collaborative research findings, including the sufficiency of critical cell entrance values in determining the fibered rank invariant, the acceleration of multi-parameter persistence computation through Morse complex reduction, and the derivation of Morse inequalities for Betti numbers in multi-parameter persistence modules. Gain insights into the ongoing efforts to bridge these two theories and their implications for advancing topological data analysis.

Syllabus

Claudia Landi (8/29/21): Discrete Morse Theory meets Multi-Parameter Persistence


Taught by

Applied Algebraic Topology Network

Related Courses

Topological Data Analysis - New Perspectives on Machine Learning - by Jesse Johnson
Open Data Science via YouTube
Analyzing Point Processes Using Topological Data Analysis
Applied Algebraic Topology Network via YouTube
MD Simulations and Machine Learning to Quantify Interfacial Hydrophobicity
Applied Algebraic Topology Network via YouTube
Topological Data Analysis of Plant-Pollinator Resource Complexes - Melinda Kleczynski
Applied Algebraic Topology Network via YouTube
Hubert Wagner - Topological Data Analysis in Non-Euclidean Spaces
Applied Algebraic Topology Network via YouTube