YoVDO

Classification Trees in Python from Start to Finish

Offered By: StatQuest with Josh Starmer via YouTube

Tags

Python Courses Decision Trees Courses Data Formatting Courses Cross-Validation Courses One Hot Encoding Courses

Course Description

Overview

Learn to implement classification trees in Python from start to finish in this comprehensive webinar. Explore the entire process, including importing modules and data, handling missing data, formatting data with one-hot encoding, building preliminary trees, pruning techniques, and creating the final tree. Gain practical insights into visualizing alpha values and applying cross-validation for optimal tree construction. Perfect for those already familiar with decision trees, cross-validation, confusion matrices, cost complexity pruning, and concepts of bias, variance, and overfitting.

Syllabus

This webinar was recorded 20200528 at am New York time.
Awesome song and introduction
Import Modules
Import Data
Missing Data Part 1: Identifying
Missing Data Part 2: Dealing with it
Format Data Part 1: X and y
Format Data Part 2: One-Hot Encoding
Build Preliminary Tree
Pruning Part 1: Visualize Alpha
Pruning Part 2: Cross Validation
Build and Draw Final Tree


Taught by

StatQuest with Josh Starmer

Related Courses

Statistical Learning with R
Stanford University via edX
The Analytics Edge
Massachusetts Institute of Technology via edX
Machine Learning 1—Supervised Learning
Brown University via Udacity
The Caltech-JPL Summer School on Big Data Analytics
California Institute of Technology via Coursera
機器學習技法 (Machine Learning Techniques)
National Taiwan University via Coursera