YoVDO

New Machine Learning Models for Single-cell and Regulatory Genomics

Offered By: Computational Genomics Summer Institute CGSI via YouTube

Tags

Machine Learning Courses Bioinformatics Courses Epigenetics Courses Computational Biology Courses

Course Description

Overview

Save Big on Coursera Plus. 7,000+ courses at $160 off. Limited Time Only!
Explore cutting-edge machine learning models for single-cell and regulatory genomics in this comprehensive lecture from the Computational Genomics Summer Institute. Delve into Christina Leslie's presentation on innovative approaches for analyzing single-cell multi-omics data, enhancer identification, and chromatin accessibility. Learn about new methodologies for embedding single-cell ATAC-seq data and predicting 3D contact maps from chromatin accessibility. Gain insights into the latest advancements in computational genomics, including functional and disease-associated enhancer identification, chromatin potential analysis, and scalable sequence-informed embedding techniques. Discover how these novel machine learning models are revolutionizing our understanding of gene regulation and cellular heterogeneity at the single-cell level.

Syllabus

Christina Leslie | New Machine Learning Models for Single cell and Regulatory Genomics | CGSI 2024


Taught by

Computational Genomics Summer Institute CGSI

Related Courses

Introduction to Artificial Intelligence
Stanford University via Udacity
Natural Language Processing
Columbia University via Coursera
Probabilistic Graphical Models 1: Representation
Stanford University via Coursera
Computer Vision: The Fundamentals
University of California, Berkeley via Coursera
Learning from Data (Introductory Machine Learning course)
California Institute of Technology via Independent