New Machine Learning Models for Single-cell and Regulatory Genomics
Offered By: Computational Genomics Summer Institute CGSI via YouTube
Course Description
Overview
Explore cutting-edge machine learning models for single-cell and regulatory genomics in this comprehensive lecture from the Computational Genomics Summer Institute. Delve into Christina Leslie's presentation on innovative approaches for analyzing single-cell multi-omics data, enhancer identification, and chromatin accessibility. Learn about new methodologies for embedding single-cell ATAC-seq data and predicting 3D contact maps from chromatin accessibility. Gain insights into the latest advancements in computational genomics, including functional and disease-associated enhancer identification, chromatin potential analysis, and scalable sequence-informed embedding techniques. Discover how these novel machine learning models are revolutionizing our understanding of gene regulation and cellular heterogeneity at the single-cell level.
Syllabus
Christina Leslie | New Machine Learning Models for Single cell and Regulatory Genomics | CGSI 2024
Taught by
Computational Genomics Summer Institute CGSI
Related Courses
Network Analysis in Systems BiologyIcahn School of Medicine at Mount Sinai via Coursera Molecular Dynamics for Computational Discoveries in Science
University of Massachusetts Boston via Independent Biology Meets Programming: Bioinformatics for Beginners
University of California, San Diego via Coursera Python for Informatics: Exploring Information
Open Education by Blackboard Genomic Medicine Gets Personal
Georgetown University via edX