YoVDO

Practical Quantum Circuits for Block Encodings of Sparse Matrices

Offered By: Institute for Pure & Applied Mathematics (IPAM) via YouTube

Tags

Quantum Circuits Courses Quantum Computing Courses Random Walks Courses Sparse Matrices Courses

Course Description

Overview

Explore practical quantum circuits for block encodings of sparse matrices in this 38-minute conference talk presented by Chao Yang from Lawrence Berkeley National Laboratory. Delve into the world of quantum numerical linear algebra as Yang discusses how standard linear algebra problems can be solved on quantum computers using block encoding and quantum singular value transformation techniques. Learn about the challenges and strategies for constructing efficient quantum circuits, particularly for well-structured sparse matrices and stochastic matrices corresponding to random walks on graphs. Discover how these techniques can potentially achieve exponential speedup in solving linear algebra problems compared to classical computers, and gain insights into the implementation of efficient quantum walks through block encoding.

Syllabus

Chao Yang - Practical Quantum Circuits for Block Encodings of Sparse Matrices - IPAM at UCLA


Taught by

Institute for Pure & Applied Mathematics (IPAM)

Related Courses

Intro to Computer Science
University of Virginia via Udacity
Quantum Mechanics for IT/NT/BT
Korea University via Open Education by Blackboard
Emergent Phenomena in Science and Everyday Life
University of California, Irvine via Coursera
Quantum Information and Computing
Indian Institute of Technology Bombay via Swayam
Quantum Computing
Indian Institute of Technology Kanpur via Swayam