Chan Vese Attention U-Net - An Attention Mechanism for Robust Segmentation
Offered By: Conference GSI via YouTube
Course Description
Overview
Explore an innovative attention mechanism for robust segmentation in this 20-minute conference talk from GSI. Learn about the Chan Vese Attention U-Net, a novel approach that enhances segmentation accuracy and reliability across various applications. Discover how this advanced technique combines the strengths of the Chan-Vese model with attention mechanisms to improve U-Net performance. Gain insights into the architecture, implementation, and potential benefits of this cutting-edge segmentation method for computer vision and image processing tasks.
Syllabus
Chan Vese Attention U-Net: An attention mechanism for robust segmentation
Taught by
Conference GSI
Related Courses
Neural Networks for Machine LearningUniversity of Toronto via Coursera 機器學習技法 (Machine Learning Techniques)
National Taiwan University via Coursera Machine Learning Capstone: An Intelligent Application with Deep Learning
University of Washington via Coursera Прикладные задачи анализа данных
Moscow Institute of Physics and Technology via Coursera Leading Ambitious Teaching and Learning
Microsoft via edX