Challenges and Prospects for Low-Level End-to-End Reconstruction With Machine
Offered By: International Centre for Theoretical Sciences via YouTube
Course Description
Overview
Explore the challenges and future prospects of low-level end-to-end reconstruction using machine learning techniques in high energy physics in this conference talk by Jan Kieseler. Delve into cutting-edge applications of deep learning for particle detection and reconstruction at the Large Hadron Collider. Gain insights into how machine learning algorithms are revolutionizing data analysis in experimental particle physics, enabling more efficient processing of the massive datasets produced by modern collider experiments. Learn about the latest developments in end-to-end reconstruction methods and their potential to improve particle identification and measurement precision. Discover the current limitations and ongoing research efforts to overcome challenges in implementing these advanced techniques for real-time data processing and analysis in high energy physics experiments.
Syllabus
Challenges and prospects for low-level end-to-end reconstruction with machine... by Jan Kieseler
Taught by
International Centre for Theoretical Sciences
Related Courses
Физика как глобальный проектNational Research Nuclear University MEPhI via Coursera Introduction to Quantum Field Theory (Theory of Scalar Fields) - Part 2
IIT Hyderabad via Swayam Deep Learning Pipelines for High Energy Physics Using Apache Spark and Distributed Keras
Databricks via YouTube Helium Dimers and Trimers - From Imaging of Structure to Movies of Ultrafast Dynamics - Reinhard Dorner
Kavli Institute for Theoretical Physics via YouTube Bosons and Multi-Component Fermions Near Unitarity - Ubirajara van Kolck
Kavli Institute for Theoretical Physics via YouTube