YoVDO

Certifying Almost All Quantum States with Few Single-Qubit Measurements

Offered By: Simons Institute via YouTube

Tags

Quantum Information Science Courses Neural Networks Courses Tensor Networks Courses

Course Description

Overview

Save Big on Coursera Plus. 7,000+ courses at $160 off. Limited Time Only!
Explore a groundbreaking lecture on certifying quantum states using minimal single-qubit measurements. Delve into Robert Huang's research from the California Institute of Technology, which introduces a novel technique for verifying n-qubit states with only O(n^2) measurements. Learn how this method relates certification to random walk mixing times, offering significant implications for quantum system benchmarking, circuit optimization, and efficient prediction of non-local properties. Discover applications in neural networks, tensor networks, and other quantum state representations, with numerical experiments demonstrating advantages over existing methods like cross-entropy benchmarking (XEB). Gain insights into the potential impact on quantum information science and the verification of complex quantum systems.

Syllabus

Certifying almost all quantum states with few single-qubit measurements


Taught by

Simons Institute

Related Courses

Classical Simulation of Quantum Many-body Systems with Tensor Networks
Simons Institute via YouTube
Quantum Circuits, Cellular Automata and Tensor Networks - Ignacio Cirac
Institute for Advanced Study via YouTube
Tensor Networks and Neural Network States - From Chiral Topological Order to Image Classification
APS Physics via YouTube
Bridging Deep Learning and Many-Body Quantum Physics via Tensor Networks
APS Physics via YouTube
Tensor Networks -QC-DMRG- in a Complete Active Space Coupled Cluster Method
Institute for Pure & Applied Mathematics (IPAM) via YouTube