YoVDO

Scalable Graph-based Bug Search for Firmware Images

Offered By: Association for Computing Machinery (ACM) via YouTube

Tags

ACM CCS (Computer and Communications Security) Courses Cybersecurity Courses Feature Extraction Courses Firmware Analysis Courses Vulnerability Research Courses

Course Description

Overview

Explore a conference talk from CCS 2016 that presents a scalable graph-based approach for bug searching in firmware images. Learn about the challenges of finding vulnerabilities in IoT devices and the innovative solution proposed by researchers from Syracuse University. Discover how raw feature extraction, feature learning, and high-level feature encoding contribute to efficient bug detection. Examine the evaluation process, including datasets, baseline comparisons, true positive rates, ROC curves, search efficiency, and scalability. Gain insights into the preparation time and comparative analysis with other methods. Conclude with a case study that demonstrates the practical application of this cutting-edge technique in enhancing IoT device security.

Syllabus

Intro
Finding vulnerabilities in loT devices is more crucial than ever!
Search for known vulnerabilities
Pair-wise graph matching is expensive!
A similar problem
We don't compare images one by one
Our approach
Raw feature extraction
Feature learning
High-level feature encoding
Evaluating
Evaluation: Datasets
Evaluation: Baseline Comparison
Evaluation: True Positive Rate
Evaluation: ROC curves
Evaluation: Search Efficiency
Evaluation: Search Scalability
Evaluation: Preparation Time
Evaluation: Compare with Multi-MH/Multi-k-MH
Evaluation: Case Study II
Conclusion


Taught by

ACM CCS

Related Courses

Ethical Hacking in 15 Hours - 2023 Edition - Learn to Hack
Cyber Mentor via YouTube
Contextomy - Let's Debug Together
nullcon via YouTube
macOS Security Features Bypasses by Example
nullcon via YouTube
Exploiting Android Messengers with WebRTC
nullcon via YouTube
XNU Heap Exploitation - From Kernel Bug to Kernel Control
nullcon via YouTube